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Abstract

The goal of this project was to test the applicability of information theoretic learning (feasibility

study) to develop new brain computer interfaces (BCI). The difficulty to BCI comes from several

aspects: (1) the effective data collection of signals related to cognition; (2) the preprocessing of

these signals to extract the relevant information; (3) the pattern recognition methodology to detect

reliably the signals related to cognitive states. We only addressed the two last aspects in this

research. We started by evaluating an information theoretic measure of distance (Bhattacharyya

distance) for BCI performance with good predictive results. We also compared several features to

detect the presence of event related desynchronization (ERD) and synchronization (ERS), and

concluded that at least for now the bandpass filtering is the best compromise between simplicity

and performance. Finally, we implemented several classifiers for temporal pattern recognition.

We found out that the performance of temporal classifiers is superior to static classifiers but not

by much. We conclude by stating that the future of BCI should be found in alternate approaches to

sense, collect and process the signals created by populations of neurons. Towards this goal, cross-

disciplinary teams of neuroscientists and engineers should be funded to approach BCIs from a

much more principled view point.

I- What is a Brain Computer Interface?

A Brain computer interface (BCI) is a device that allows a person to control its environment by

generating specific brain wave patterns. Using the term "thoughts" to describe the mental activity

that produces the brain wave patterns, we can say that the goal of a BCI is to control the external

environment directly with thought. There have been at least four types of experimental paradigms

to accomplish this goal:

• the generation of event related potentials (ERPs) by appropriate external stimulation (com-

puter displays),

• imagination of movement (hands or feet),

• engagement in mental activity of different nature (e.g. math versus music),

• biofeedback

In all these cases, the electroencephalogram (EEG) was utilized as the variable that accessed and

quantified the mental state. However, they differ in detail. For instance, the ERPs are faint, fast
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transients related to the processing of expected stimulus (P 300) [6] [12], [ 14], while the imagina-

tion of movement is translated in synchronization and desynchronization in the alpha and beta fre-

quency bands over the motor cortex [2], [9], [15], [21], the math versus music tests attempt to find

global changes in the EEG power spectrum over the hemispheres [ 1], and finally the biofeedback

approach instructs the patient to create alpha bursts [14]). From all these signals the one that has

been shown more reliable is the alpha and beta changes over the motor cortex [;15].

BCIs can be used in a variety of situations. Quadriplegics or patients suffering from amyotrophic

lateral sclerosis or any other type of the so called locked-in-syndrome can use a BCI. Human

operators in highly instrumented environments (such as fighter pilots) can benefit from BCIs to

complement their hands.

The difficulties of creating useful BCIs are mostly derived from the low signal-to-noise ratio of

the EEG signals and the intra and inter subject variability. This creates a very low bit rate channel

(mostly binary decisions) that has hindered applicability. Presently, the groups working in this

area have focused their work in the locked-in-syndrome cases, where the subjects have all the

time in the world to make decisions. Even in this area, other methods using eye blinking or gaze

have shown practical advantages. Hence, we conclude that much more work is needed in the

design of effective signal interfaces to the brain. This project does not attempt to create better sig-

nal collection methodologies. It assumes that the available signals are the EEG channels collected

over the motor cortex areas, and the goal is to make as reproducible as possible BCIs by testing

several signal processing and machine learning algorithms.

II- Experimental Setup

We utilized the data collected in Dr. Gert Pfurtscheller Laboratory in Graz, Austria for our studies,

since we would like to obtain a straight comparison for our processing algorithms with his own

results. This group uses the event related synchronization (ERS) and event related desynchroniza-

tion (ERD) in the alpha and lower beta bands over specific areas of the motor cortex. For instance,

imagination of hand movement produces an ERD pattern focussed on the contralateral hand area.

In some subjects the ERD is followed by a ERS. We will be using this phenomenon to distinguish

between YES/NO commands, where YES is associated with an ERD/ERS at the left motor area
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and NO is an ERD/ERS at the right motor area. Since we want a real-time system, no averaging

will be performed (which, as is well known improves the SNR by a factor equal to the square root

of the number of trials).

The subject is seated in front of a monitor and tries to control his mental activity in accordance

with cues given on the monitor. Each trial last 8 seconds, and they are separated by a short 0.5 sec

break. Forty trials make a run, and a session is 4 runs. Each run consists of 20 left trials and 20

right trials in randomized order. Each trial has a period of fixation to a cross that appears in the

screen (3 sec), and a beep occurs (after 2seconds) to signal the occurrence of a cue (left or right

arrow) for 1.25 second. The subject is instructed to imagine movement of the corresponding left

or right hand for 4 seconds. Feedback in the form of a growing rectangle proportional to the out-

put of the classifier is also displayed in the screen.

Data was collected from 6 sessions of three young healthy subjects (male college students) g3, g7

and i2. They were selected because they display three levels of performance (very good, moderate

and poor respectively). Four electrodes were placed 2.5 cm anterior and posterior to C3 and C4 to

obtain two bipolar EEG channels over the left and right motor areas. The signal was sampled at

128 Hz, with an anti-aliasing filter at 30 Hz. The trials were visually inspected for artifacts and

these trials removed. Table I shows the number of trials used per subject (trial 1 is used to set the

feedback). Due to the subject variability, the data was segmented individually per subject, as

shown below the subject identification.

Table 1: Data used for the tests

Session g3 g7 i2
(3-7 sec) (4.5-7.25 sec) (3.5-7.6.75 sec)

2 159 154 139

3 156 157 153

4 160 157 160

5 160 138 152

6 152 152 131
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III- Feature Selection

The knowledge of the ERE) and ERS shows that the alpha (9-13 Hz) and low beta band (20-24

Hz) contain the information for ERD and ERS (see Figure 1). We used a 5th order Butterworth

IIR filter and integrated for 1 sec to obtain signal power. Downsampling to 8 Hz is done next.

Hence using the a priori knowledge about the task we can quantify the EEG activity with a 4 fea-

ture vector (alpha and beta band powers at the left and right motor areas). The first important

questions that we asked were: what additional features can we obtain from the data7 is this feature

set optimal? To rate the feature sets we decided to use an information theoretic measure.
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Figure 1. Examples of ERD and ERS in the EEG.
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III-1 Distance Measures

We started with the well known Bhattacharyya distance [5] between two distributions pl(x) and

p2(x) given by

D B = P_-_lP2IPl(X)P2(x)dx

where P1 and P2 are the a priori probabilities of each event (here equal to 0.5). When the pdfs are

Gaussian the integral can be computed in closed form as

D B = 05e -_(0"5) 11(0.5) = O.125(ml-m2)L------_ ) (ml-m2)+0.51n• dlz,I+Iz21

where m and Z are respectively the mean and covariance matrix of each multidimensional Gauss-

ian distribution. The Bhattacharyya distance in our experiments is used as a measure of the sepa-

ration between the left and right hand movements, hence, as a measure of performance in the BCI.

After computation of the Bhattacharyya distance (BD), we can predict performance of the classi-

tiers and select the subjects in advance with a pre-trial. If a subject gives a low BD, we know that

he or she is unable to provide good discrimination and the task of developing a BCI will be very

difficult. On the other hand, for pattern recognition the BD also provides a way of ranking fea-

tures for the classifier.

Early results showed that the estimation of these covariance matrices for our four dimensional

small size data sets were meaningless (due to inaccuracies in the estimation of the covariance).

We therefore propose here a new method where the MEDIAN operator is used instead of the

mean. This is known in the digital signal processing literature this is called rank filtering [3]. We

therefore adopt the same definition for D B but substitute the mean operator by the median (for

both the mean m and covariance Z). The advantage of the median Bhattacharyya distance (MBD)

over BD is that the estimations will be much more robust.

We would like to improve on this distance measure even further, but we could not do it in this
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grant due to lack of time. Our idea is to use the Information Potential [ 16] to estimate the distance

between the two data sets. In fact we believe we can even use directly this measure to project the

data to a subspace where classification can be accomplished.

III-2 Alternative Features

There are many other alternative EEG features besides alpha and beta band powers that we can

utilize in the design of a BCI. Now that we have a measure of quality (the (MBD)) we can imple-

ment them and compare. In this research we utilized the following

AR coefficients: We computed a 6th order autoregressive (AR) model using the RLS (recursive

least square) algorithm. The information is contained in the coefficients, so we performed an aver-

aging over 16 time steps. This feature set is 12 dimensions.

Hjorth parameters: Hjorth [10] in a very influential set of papers proposed the activity, mobility

and complexity as three time domain descriptors of EEG activity. Activity is simply the variance

of the signal, the mobility the ratio of the variance of the first derivative of the signal over the

variance of the signal, while the complexity is the ratio of the mobilities of the first derivative and

of the signal itself. The integration is done over 1 sec, with a first order recursive integrator. The

values for complexity, mobility and complexity were averaged over 16 time steps, providing a six

dimension vector.

Principal Component Analyzer: The goal is to discover the direction in space where the signal has

the largest power. We can do this very simply by implementing a temporal PCA network trained

with the Sanger's rule [19]. This network is effectively an optimal filter bank where the square of

the outputs are the eigenvalues of the time autocorrelation matrix [17]. In this case we choose an

embedding of 16 (16 delays which gives 16 PCA components). Once again the outputs were

smoothed with a window of 16 samples. We end up with 32 features with PCA. However, since

the signal is noisy, we can not take simply the first 2 features of each decomposition (for a total of

4 features from both channels), because the largest component will very likely represent the back-

ground EEG activity, not the signal of interest. The selection of the best components requires

therefore some form of metric, and we decided to use the 2 projections per channel that produced

the best MBD.
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IV- Results

IV- 1 Preprocessors

At this point we can compare these 4 preprocessors for the BCI using the MBD. Figure 2 shows

the MBD as a function of time (during the trial) for the three subjects and using our 4 preproces-

sors.
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Figure 2. MDB across windows for the 3 subjects and different preprocessors.

We can immediately see several interesting things in these plots: first the three subjects offer 3

different performances as computed by the MBD. Subject g3 provides the largest separation and
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hence will yield the best classification results. Subject i2, yields an intermediate value, while sub-

ject g7 is the poorest. We can also see that the four preprocessors preserve differently the separa-

bility between the two experimental conditions (right and left hand movements) for the same

subject. Overall the alpha and beta filters are judged the best due to the simplicity of the method.

We were disappointed with the optimal filter bank and think that more work is needed to find out

why we can not supplant the other methods. But we run out of time for furtherexperimentation.

There are also other sets of features that we would like to experiment with, in particular the ones

found in independent component analysis (ICA) [11]. ICA can be computed with our present

algorithms of the information potential; but we thought we should first address more conventional

processing to establish baselines. Further work in this area is also warranted.

One important question we did address was how good is the MBD as a predictor of performance

for classification of brain states. With the best neural network (discussed in the next section), we

created the following table that shows the classification accuracy and the upper bound estimated

from the MBD.

Table 2: Estimated and actual error rates

MBD error rate of
subject

upper bound (%) ANN (%)

g3 13.3 8.3

g7 38 31.9

i2 25.4 22.1

As we can see the MBD is a good estimator of performance for classification in BCI. For a more

detailed analysis we plot in Figure 3 the error for the neural network as a function of window

location to qunatify better the correlation with the Bhattacharyya distance.
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Figure 3. Classification error across windows. Compare with Figure 2.

Notice that this is a very nice time saving feature, because we do not have to go through long data

collections, and delve into the experimental selection of parameters and classifier training. In

some cases there are simply no good parameters because the subject themselves do not follow the

expected population trends.
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IV- 2. Classifiers for BCIs

Notice that the task of classifying EEG patterns for a BCI is a nontrivial problem. First, the data is

noisy as we already have shown, but the other difficulty is that the signals exist in time, so effec-

tively we are interested in performing temporal pattern recognition. Pattern recognition is nor-

mally applied to static patterns [5], so conventional techniques can not be applied directly to BCI.

Hence, it is important to compared several types of classifiers with the goal of_showing how per-

formance changes with the structure of the classifier.

A very simple trick is to use a time window over the input data or in the first layer of our classifier

to effect a time to space mapping [17]: However, the difficulty with this task is to select a good

window size that maximizes classification accuracy. The TDNN is such a classifier [20]. We can

also just let the classifier find the window that provides the best classification results. The gamma

neural network implements this idea [18]. The problem with this approach is that training has to

be done over time (BPTT) since the neural network became recurrent and the gradients exist in

time.

One of the difficulties of temporal pattern recognition faced in training dynamic neural networks

is what is the desired response over time. We have studied this problem some time ago [22] for

spike detection, and concluded that the desired signal should be 1 when the transient occurs.

When the event is not present the system should be trained with a don't care condition. We tested

several (simple prediction or random values in the desired response). Here the problem is even

more difficult because the ERD and ERS signals alternate in time and we are not certain where

they occur. We can have an indirect measure of the difficulty by observing the MBD plots of Fig-

ure 2 and noting that the value varies over time. We therefore developed a method to perform

classification without a numerical target [7]. Once again the method is based on mutual informa-

tion but we only had time to scratch the surface. We published a paper with a simple classification

problem but it clearly shows promise to improve classification in temporal pattern recognition [7].

More work is needed in this area since the algorithm has an intrinsic compromise between two

information forces that we were not able to find for EEG signals. We proceeded with the compar-

ison of more conventional classifiers: a linear discriminant based on Fisher's method, a percep-

tron, a TDNN, a gamma network, and a TDNN trained with dynamic targets (DT) as proposed in
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[8]. The Table shows the error rates we obtained for each subject

Table 3: Error rates for different classifiers (%)

subject Fisher MLP TDNN gamma DT

g3 7 6.8 7.1 7.7 4.8

g7 32 34 30.8

i2 22 20 21

34 32.4

20.6 20.8

As we can see from the table, the neural network topology only affects slightly the general trends

of accuracy. If a subject is able to create ERD/ERS (as subject g3) then any of the classifiers work

reasonable well (50% is random performance). We can however see that for simplicity the linear

Fisher discriminator is unbeatable. If we want to achieve the top performance than we have to go

to a neural network trained over time, with a special desired signal that is adapted during training.

This is rather complicated and does not change the fact that there are subjects simply unable to

provide good brain patterns for BCI devices. It does however state that there is more information

for classification when we look at the time series (i.e. the signal has repeatable dynamics), but the

issue is how to extract the information efficiently.

V- Conclusions

During this research period we have investigated the possibility of implementing BCIs using EEG

signals created in the motor cortex when hand movements are imagined. We have set out the stage

to continue working in this area by investigating the problem from first principles. We have now

the baseline results with respect to which we can compare improvements in the methods for both

temporal pattern recognition and feature extraction. Therefore, we are ready to continue our work

in the implementation of the newly introduced information theoretic learning algorithms devel-

oped at the CNEL.

VI- Publications

Haselsteiner E., Principe J., "Supervised Learning without Numerical Targets", Proceedings of

NC'2000, Berlin, 2000.
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Another paper is under preparation to be submitted to the IEEE Trans Biomedical Engineering,

and one more conference proceedings to be submitted to the neural network community.

VII- Future Research

After working during the past year with the brain signals from motor cortex, we have the follow-

ing observations:

1- Quantitative improvements to BCI can only come with a more sophisticated data collection and

experimental design schemes. As we could see from the experimental design the subject was

engaging the full brain to make a binary decision. This seems the real bottle neck of this method-

ology when electrodes are placed over the scalp. So we consider that the true potential of BCIs is

centered in new experimental paradigms, the development of multi-electrode arrays, devices and

algorithms that will be able to collect more specific brain patterns. An integral part of this

endeavor is to address the neuroscience fundamentals required to understand better how neural

assemblies communicate and process information. This is a very important area of research in the

frontiers of neuroscience and biomedical engineering, that we can truly name Neural Engineer-

ing. NASA funding for this area will have a potential large impact in the computational neuro-

science and biomedical engineering communities. We, at the University of Florida Computational

NeuroEngineering Laboratory and our contacts with the Brain Institute and other colleagues in

neuroscience, will be able to conduct the research necessary to make "brain chips" in analog

VLSI technology that will be able to process on site the signals collected by multi-electrode

arrays. To embark in this direction we will need funding on the order o[ $100 K per year to estab-

lish collaboration with a neuroscience group with the goal of developing the experimental design,

the implementation of analog VLSI chips to process brain signals and extract their features.

2- Of course the feature extraction/pattern recognition methodologies we implemented in the first

year need improvements. We propose to investigate the following aspects:

• Use the Information Potential and the Integrated Square Error to evaluate the separability

between classes, instead of the MBD, which assumes Gaussian distributions.

• Improve the PCA optimal filter bank with an independent component analyzer using the min-

imization of mutual information.
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• Find new features by using "Information Filtering", i.e. projecting the input data into a sub-

space that best preserves separability between the two classes.

• Proceed with the classification of temporal patterns without numerical targets.

This work requires the present level of yearly funding ($50K).
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